Nonconvex Relaxation Approaches to Robust Matrix Recovery
نویسندگان
چکیده
Motivated by the recent developments of nonconvex penalties in sparsity modeling, we propose a nonconvex optimization model for handing the low-rank matrix recovery problem. Different from the famous robust principal component analysis (RPCA), we suggest recovering low-rank and sparse matrices via a nonconvex loss function and a nonconvex penalty. The advantage of the nonconvex approach lies in its stronger robustness. To solve the model, we devise a majorization-minimization augmented Lagrange multiplier (MM-ALM) algorithm which finds the local optimal solutions of the proposed nonconvex model. We also provide an efficient strategy to speedup MM-ALM, which makes the running time comparable with the state-of-the-art algorithm of solving RPCA. Finally, empirical results demonstrate the superiority of our nonconvex approach over RPCA in terms of matrix recovery accuracy.
منابع مشابه
A Nonconvex Free Lunch for Low-Rank plus Sparse Matrix Recovery
We study the problem of low-rank plus sparse matrix recovery. We propose a generic and efficient nonconvex optimization algorithm based on projected gradient descent and double thresholding operator, with much lower computational complexity. Compared with existing convex-relaxation based methods, the proposed algorithm recovers the low-rank plus sparse matrices for free, without incurring any a...
متن کاملA semidefinite relaxation scheme for quadratically constrained
Semidefinite optimization relaxations are among the widely used approaches to find global optimal or approximate solutions for many nonconvex problems. Here, we consider a specific quadratically constrained quadratic problem with an additional linear constraint. We prove that under certain conditions the semidefinite relaxation approach enables us to find a global optimal solution of the unde...
متن کاملRobust static and fixed-order dynamic output feedback control of discrete-time parametric uncertain Luré systems: Sequential SDP relaxation approaches
Design methods are proposed for static and fixed-order dynamic output feedback controllers for discretetime Luré systems with sector-bounded nonlinearities in the presence of parametric uncertainties described by polytopes. The derived design conditions are represented in terms of bilinear matrix inequalities, which are nonconvex. By using convex relaxation methods, controller design equations ...
متن کاملExact Low-rank Matrix Recovery via Nonconvex Mp-Minimization
The low-rank matrix recovery (LMR) arises in many fields such as signal and image processing, statistics, computer vision, system identification and control, and it is NP-hard. It is known that under some restricted isometry property (RIP) conditions we can obtain the exact low-rank matrix solution by solving its convex relaxation, the nuclear norm minimization. In this paper, we consider the n...
متن کاملA Nonconvex Optimization Framework for Low Rank Matrix Estimation
We study the estimation of low rank matrices via nonconvex optimization. Compared with convex relaxation, nonconvex optimization exhibits superior empirical performance for large scale instances of low rank matrix estimation. However, the understanding of its theoretical guarantees are limited. In this paper, we define the notion of projected oracle divergence based on which we establish suffic...
متن کامل